Overview
Applications

- De-icing of pathways

Lawn areas (spreading width to 6.5')

- Horticulture
- Around trees and bushes

Exact spot applications around

- Bushes
- Decoration rocks
- Fountains
- Light poles
and any more
... also suitable for fertilizing pot plants

Granomax: Fast and even spreading Ideal for large and small areas

Granomax ready to use

Flow rate

$800-1200 \mathrm{~g} / \mathrm{min}$

Viewing window granule flow

Granules

Law fertilizer Lawn sand Lawn seeds Flower fertilizer Oil absorber Granules up to a size of 4 mm can be spreaded

Rock salt De-icing granules Sand etc.

\square
Granomax Shovel
Art.-No. 11892901 (TU 5 pcs)
Dust proof 1.7 gal filling volume of the bag (approx. 11 lbs fertilizer) (approx. 18 lbs salt)

Large opening and zip closure
Preparing the equipment for use

Fertilizer and salt spreader with dosage control

Approximate flow rates in grams per minute (5 kg filling approx. 45° spreading angle)

	Lawn fertilizer	Lawn seeds	Lawn sand	Rock salt
Step 1	-	-	$300-500$	$300-600$
Step 2	$100-200$	-	$1300-1500$	$600-900$
Step 3	$800-1000$	-	$2300-2500$	$4200-4800$
Step 4	$1600-1800$	$500-700$	$3500-3700$	$5500-6500$
Step 5	$1900-2100$	$900-1200$	$7500-7800$	-

Example calculation of flow rate resp. adjustment of step
A Walking speed e.g. $0,4 \mathrm{~m} / \mathrm{s}$ (equal to 1 step per second)
B Spreading width e.g. 2 m
C Area coverage e.g. $35 \mathrm{~g} / \mathrm{m}^{2}$ (according to the indication of the granulate producer)
$A \times B \times C \times 60=$ Grams per minute, resp. step of flow rate adjustment
$0,4 \mathrm{~m} / \mathrm{s} \times 2 \mathrm{~m}=0,8 \mathrm{~m}^{2} / \mathrm{s} \quad$ (= Area covered per second)
$35 \mathrm{~g} / \mathrm{m}^{2} \times 0,8 \mathrm{~m}^{2}=28 \mathrm{~g} / \mathrm{s} \quad\left(=\right.$ Quantity distributed per second on $0,8 \mathrm{~m}^{2}$)
$28 \mathrm{~g} / \mathrm{s} \times 60 \mathrm{~s}=1680 \mathrm{~g} / \mathrm{min}$. (=Quantity distributed per minute)
$1680 \mathrm{~g} / \mathrm{min}$, correspond (according to table) to step 4

